
visit runsecurity.com | info@runsecurity.com © 2025 run security

Evaluating
& Enhancing
Application
Security for
Modern Demands

AppSec
Revamped

© 2025 run security

© 2025 run security002

THEMES & CONSIDERATION

© 2025 run security

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci
tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat, vel illum dolore eu feugiat nulla
facilisis at

© 2025 run security

RS / WHITEPAPEr002

Executive Summary

AppSec Revamped

Application Security has evolved to the point where traditional technologies
have reached their limits. While they have successfully fulfilled their purpose
and enabled secure application ecosystems, they now lack the capabilities
and features needed to meet modern demands.

Application Security was founded about twenty years ago, before the
DevSecOps paradigm, which seamlessly integrated security technologies and
processes into application development and operations, had been introduced.
At that time, open-source components didn’t make up 90% of a typical
application. Concepts like cloud-native applications, distributed applications,
microservices, and APIs were either absent or underdeveloped. Moreover,
hackers’ attacks were not as relentless and widespread as they are today;
hackers were mostly individuals, not organized criminal groups or
government-sponsored cyberwarfare troops.

In this new era, Applicaiton Security demands new technologies, features and
capabilities. Let’s assess our readiness by reviewing the existing portfolio of
tools, identify their strengths and gaps, and envision the next stage of evolution.

© 2025 run security

RS / WHITEPAPEr003

FIRST PHASE OF APPLICATION SECURITY

AppSec Revamped

FIGURE 1 — First Phase of AppSec Evolution: AppSec Testing, WAF/WAAP

Leading assessments show that the Application Security market has grown
to nearly $10 billion in just two decades, with a growth rate of around 25%.
This significantly surpasses the 8-14% growth rates of markets like Identity
and Access Management (IAM), Network Security, Integrated Risk, Data
Security, and Infrastructure Protection.

Let's look at the key technologies that made Application Security essential for
organizations and helped champion the industry’s growth. (See Figure 1)

PROGRAMMING TESTING OPERATION

SAST | S T R E N G T H S

� Early Detection
� Inexpensive Remediation

SCA | S T R E N G T H S

� Detects OSS with
 known vulnerabilities

DAST | S T R E N G T H S

� Tests “real”
 running application
� Simulates
 hackers’ attacks

WAF/WAAP | S T R E N G T H S

� Analyzes “real”
 running application

© 2025 run security

RS / WHITEPAPEr004

SAST

WAAP

STATIC APPLICATION SECURITY TESTING

SAST analyzes application’s code for security vulnerabilities such as SQL
Injection, Cross-Site Scripting, Cross-Site Request Forgery, etc.

Web Application and API Protection

WAAPs analyze inbound network traffic to mitigate attacks against
applications. These technologies typically include features such as web
application firewall, bot management, DDoS, and API security.

STRENGTHS

Strengths: SAST detects vulnerabilities early in the application’s life cycle.
It enables remediation earlier and inexpensively.

CHALLENGES

Challenges: SAST tests and detects vulnerabilities based on an
application’s code, not while it’s running. Therefore, it is broadly open to
false positives.

STRENGTHS

WAAP is a runtime technology that analyzes applications’ operations in the
operation phase of its lifecycle – the phase that is not addresses by SAST,
DAST, and SCA.

CHALLENGES

WAAP is a traffic analyzer, it does not have insight into application’s code,
components, or architecture. It watches the outcome of the application
processes, not the source of those processes within the application or
across the application/API ecosystem. WAAPs lack accuracy of API
detection due to this.

© 2025 run security

RS / WHITEPAPEr005

Dynamic Application Security Testing

DAST analyzes a running application by launching simulated attacks, watching
application response to the attacks, and thus concluding whether those
attacks were successful.

Software Composition Analysis

SCA detects malicious open-source software (OSS) components with security
vulnerabilities, OSS components with legal issues (e.g., improperly licensed

STRENGTHS

DAST is a runtime technology that watches application behavior while
under attack, analyzing the application’s execution which typically
occurs at the test phase of the lifecycle.

CHALLENGES

 It is a “black-box” technology. Even if it detects a vulnerability,
it does not have insight into application code, composition, and
architecture. Therefore, it has a limited ability to point to the origin
of the vulnerability.

SCA

DAST

CHALLENGES

STRENGTHS

SCA inventories OSS components, identifies OSS that pose risk,
enables management of the software supply chain.

SCA is not a testing technology, but an inventorying technology. Unlike
SAST and DAST, it does not analyze the application but compares the
application’s components against some known database of malicious
components (e.g. National Vulnerability Database (NVD)). SCA detects
only known vulnerabilities, it lacks the ability to discover OSS that
has not been discovered yet such as zero-days.

© 2025 run security

THEMES & CONSIDERATION

© 2025 run security

© 2025 run security

RS / WHITEPAPEr006

FIRST PHASE APPSEC CHALLENGES

AppSec Revamped

As mentioned, the first phase of Application Security served its purpose, but
lacks key capabilities to address modern threats. Here is a summary of all the
challenges.

Lack of Insight = Lack of Observability

� SAST, SCA: analyze non-running code or component’s composition
� DAST: “black box”, no insight into code, architecture, composition
� WAF/WAAP: no insight into code, architecture, composition

Intermittent Nature of Technologies

� SAST, SCA, DAST: scanners, not monitors
� WAF/WAAP: just another traffic monitoring
 technology = lack of observability into process origin

Too Complex to Use

� SAST, SCA: user-friendly, little configuration
� DAST, WAF: not user-friendly, very complex to configure

Limited Coverage of DevOps Lifecycle

� SAST, DAST, SCA, WAF/WAAP: None of them observe entire DevOps

© 2025 run security

RS / WHITEPAPEr007

Lack of Insight into a “Real” Application

� Technologies such as SAST and SCA analyze/observe not a “real” application
at the running / operation mode. Instead, they analyze the application’s code
and/or component composition. This is the most serious gap in their abilities,
which they are unable to compensate for.

� DAST does watch application in the running/ operation mode,
but it has no/minimal insight into application.

� WAAP is a runtime technology, but like DAST, it does not have
insight into application code, architecture, and composition.

Limited Coverage of DevOps Lifecycle

� None of the technologies cover the entire DevOps lifecycle:
from left to right, from programming to building/testing and to operation.

� SAST, DAST, and SCA mainly work on Build/Test phase, and
somewhat at Programming phase, but not at Operation phase.

� WAAP - at Operation phase, but not at Programming and Build/Test phases.
Therefore, at each of the phases, DevSecOps specialists must deal with a
variety of technologies: learning them, running them, and taking responsibility
for their results – a job which they are not set up to be successful. At some
DevOps phases, they are not equipped with those technologies at all or
not sufficiently-enough.

Lack of Observability

� Lack of observability for SAST and SCA stems from their inability to get
insight into a running, operational application. Lack of observability for DAST is
a result of its “black-box” nature. WAAP lacks observability due to its nature of
being a traffic analyzer, not an application-process analyzer.

© 2025 run security

RS / WHITEPAPEr008

Intermittent Nature of Technologies

� Due to today’s globally spread and relentless attacks, applications must
be under continuous, always-active monitoring and security. Unfortunately,
technologies such as SAST, DAST, and SCA are scanners which operate
intermittently. Scans run for some time, spanning many hours and then stops.
The next scan typically does not run for many hours, days, weeks or even
months. In-between scans, the application remains unwatched, unobserved,
and unsecured.

� On the contrary, WAAP is a monitoring solution, not a scanner. It continuously
analyzes application traffic. Yet, as we have pointed out, WAAP lacks
observability into applications and API processes.

Too Complex to Use

� SAST and SCA were user-friendly technologies that were successful enough
at securing applications for developers and security specialists.

� DAST was not that successful. It required manual configuration that was
both; time and resource intensive. Once configured, DAST required constant
tuning, ensuring authentication, and proper crawling - the coverage was
not a sustainable task. WAAP is complex to deploy and traditionally owned
by security specialists.

The shortcomings in current Application Security mean DevSecOps lacks a
comprehensive view of how applications and APIS are built and secured.

Existing Application Security provides limited insight into actual application/API
architecture, as well as logic, vulnerabilities, and threat processes. Consequently,
developers and security specialists can’t effectively observe what they’re building
and securing, leading to less success in development, security, and operations.

© 2025 run security

RS / WHITEPAPEr009

ATTEMPTS TO MITIGATE APPSEC CHALLENGES

AppSec Revamped

We cannot say that the Application Security industry has not worked on
addressing challenges. Two solutions have been deployed: Interactive
Application Security Testing (IAST) and Runtime Application Self-
Protection (RASP). Both technologies are similar in architecture and
features. (See Figure 2)

FIGURE 2 — IAST and RASP SOLUTIONS

PROGRAMMING TESTING OPERATION

APP

OS

IAST | S T R E N G T H S

� Tests a “real”
 running application
� Observability into logic
 & vulnerabilities

RASP | C H A L L E N G E S

� Stability concern
 about the agent
� Proprietary provenance
 of the agent
� Language-dependance,
 CPU impact

Application Runtime
Engine (e.g. JVM)

IAST / RASP AGENT

© 2025 run security

RS / WHITEPAPEr010

IAST has an agent instrumented into a runtime engine, such as a
language-virtual-machine (e.g., JVM). It also has an inducer that executes an
application at test runtime. That inducer could be a DAST technology that
launches attacks against a tested application (so-called Active IAST) or an
inducer could be a QA test: script or manual test (so-called Passive IAST).

IAST is a result of an interaction between an inducer and an agent (thus, the
name interactive: IAST). The inducer makes the tested application run, while
an agent closely and deeply observes processes within the running tested
application, enabling detection of security vulnerabilities. IAST offers a
combination and interaction of DAST and SAST features: it enables testing
at application runtime (like DAST does) and can point to the origin of the
vulnerability (like SAST does): yet another reason for naming it “interactive”.

RASP is very similar to IAST, yet with some important differences like:

 � RASP runs at Operation phase

 � RASP runs on a production (not on a test) server

 � RASP does not need DAST or QA inducers. Its inducer
 is a real attack against a production application

 � RASP can protect an application by blocking attacks
 (a feature called “virtual patching”, which stops application
 execution before it is about to follow a malicious flow
 imposed by a hacker)

© 2025 run security

RS / WHITEPAPEr011

Stability concerns about the agent instrumentation
into a runtime engine

Users get worried about a possible agent failure (especially for RASP,
at operation phase), which might cause a failure of an application itself.
This is the greatest challenge that agent-based technologies face.

Proprietary provenance of an agent

Stability concerns were exacerbated by the fact that agents were productized
by startup vendors and not endorsed by the prominent, globally recognized
vendors of runtime engines (such as vendors of operating systems, virtual
machines and other runtime platforms). This is another main challenge of
IAST and RASP.

Language-dependence

IAST and RASP agents are language-dependent, which means that one agent should
be developed for Java, another one for C#, yet another one for PHP, etc. Dependence
on a large variety of languages makes it somewhat difficult to develop and maintain
those two products. To be fair, the resolution of that challenge is more of an issue of
resources that IAST/RASP vendors could dedicate to the problem resolution.

CPU impact

IAST and RASP operate directly on the same server as the application. As a result, they
consume some of the server's CPU cycles, which can impact performance under heavy

IAST and RASP strengths were obvious and groundbreaking.
Yet, IAST and RASP adoption has been low and slow due to these challenges.

As we pointed out, those challenges substantially lowered and slowed down the adoption of IAST and
RASP. And yet, a mere emergence of those technologies has been pointing out to a tremendous value
that runtime observability solutions with deep insight into applications/API processes could have on
the advancement of Application Security which cannot be addressed by the first phase of Application
Security technologies such as SAST, DAST, SCA, and WAAP.

© 2025 run security

RS / WHITEPAPEr012

NEW OPPORTUNITIES WITH APPSEC PHASE 2

AppSec Revamped

Over the last several years, a new technology has emerged. A technology
with the potential to solve some problems that IAST and RASP have not been
able to solve. This technology is called extended Berkeley Packet Filter or
eBPF. (See Figure 3)

FIGURE 3 — EBPF - Extended Berkley Packet Filter

� Enables programming new, additional
 functionality with deep observability

� Not a proprietary feature, but a
 standardized way to extend the OS

� Offered and endorsed by the
 OS Linux Foundation

� Ensures safety, stability of the OS that
 operates with user-developed functions

� Can be deployed only after passing
 Linux-established verification procedures

� Runs in user space, in the sandbox

� No OS or any-other code changes

� No restarting server to update
 eBPF-based app

� Used by LinkedIn, Facebook,
 Netflix, Adobe, etc..

APP

CONTAINER

OUTPUT EXECUTION

PROGRAM
VERIFICATION

USER
SPACE

KERNAL
SPACEOS

© 2025 run security

RS / WHITEPAPEr013

EBPF serves as a programmable interface for Linux OS (and recently,
MSFT Windows OS). It allows developers to add new functionalities with deep
observability into application and API processes during testing and production
runtime. By using eBPF, the OS kernel remains safe and stable while operating
these user-developed functions.

EBPF, supported by the Linux OS Foundation, alleviaties concerns about
proprietary agents. Unlike IAST and RASP, eBPF is a standardized,
non-proprietary method to extend the OS. Endorsed by the Linux Foundation,
along with the ability to ensure OS kernel safety and stability, address the
main challenges that IAST and RASP have faced.

While the eBPF-led approach shows promise, it’s not without its challenges.
It still needs to demonstrate sufficient observability to meet DevSecOps
requirements. Nonetheless, its potential is encouraging.

© 2025 run security

RS / WHITEPAPEr014

RUN SECURITY: Adopting New Opportunities

AppSec Revamped

We can conclude that the first phase of Application Security has reached
its limits. New concepts, such as cloud-native applications, distributed
applications, containers, and the mass adoption of APIs demand new
solutions. All signs indicate that the next phase of Application Security
should and will be able to offer deep, runtime observability into application
and API processes, an insight into architecture, logic, vulnerabilities, and
threats in real-time across DevSecOps. This is the space where innovation
should and will be focused on in the coming months and years.
(See Figure 4)

FIGURE 4

Secures Dev
(Build/Test) & Ops

DEVSECOPS

Observability into Real
App & API architecture,

logic flow and risks
(threats & security vulns)

RUNTIME
ARCHITECTURE

Endlessly monitors, diagnoses,
and protects Apps & APIs

ACTIVE ALWAYS

Most accurate, as it
observes the running
application

RUNTIME
OBSERVABILITY

Prevents & Protects
Apps & APIs based on

ecosystem map

PREVENTION &
PROTECTION

visit runsecurity.com | info@runsecurity.com © 2025 run security

THANK YOU

